Monday 20 November 2017

Exponential Gewichtete Gleitende Durchschnittsprognose


Exponentielle Glättung erklärt. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Wenn die Menschen zuerst den Begriff Exponential Smoothing begegnen sie denken, dass klingt wie eine Hölle von viel Glättung. Was Glättung ist. Sie beginnen dann eine komplizierte mathematische Berechnung vorstellen, die wahrscheinlich erfordert einen Abschluss in Mathematik zu verstehen, und hoffe, es ist eine eingebaute Excel-Funktion verfügbar, wenn sie es jemals tun müssen. Die Wirklichkeit der exponentiellen Glättung ist weit weniger dramatisch und weit weniger traumatisch. Die Wahrheit ist, ist exponentielle Glättung eine sehr einfache Berechnung, die eine ziemlich einfache Aufgabe erfüllt. Es hat nur einen komplizierten Namen, weil was technisch passiert als Folge dieser einfachen Berechnung ist eigentlich ein wenig kompliziert. Um zu verstehen, exponentielle Glättung, hilft es, mit dem allgemeinen Konzept der Glättung und ein paar andere gängige Methoden, um Glättung zu erreichen beginnen. Was ist Glättung Glättung ist ein sehr häufiger statistischer Prozess. Tatsächlich begegnen wir regelmäßig geglättete Daten in verschiedenen Formen in unserem Alltag. Jedes Mal, wenn Sie einen Durchschnitt verwenden, um etwas zu beschreiben, verwenden Sie eine geglättete Zahl. Wenn Sie darüber nachdenken, warum Sie einen Durchschnitt verwenden, um etwas zu beschreiben, werden Sie schnell verstehen, das Konzept der Glättung. So erlebten wir zum Beispiel den wärmsten Winter. Wie können wir das quantifizieren? Nun beginnen wir mit Datensätzen der täglichen hohen und niedrigen Temperaturen für den Zeitraum, den wir Winter für jedes Jahr in der aufgezeichneten Geschichte nennen. Aber das lässt uns mit einer Menge von Zahlen, die um einiges herumspringen (es ist nicht wie jeden Tag dieser Winter war wärmer als die entsprechenden Tage aus allen früheren Jahren). Wir brauchen eine Zahl, die alle diese Sprünge aus den Daten entfernt, so dass wir besser vergleichen können einen Winter zum nächsten. Das Entfernen der Sprünge in den Daten heißt Glättung, und in diesem Fall können wir einfach einen einfachen Durchschnitt verwenden, um die Glättung zu erreichen. In der Bedarfsprognose verwenden wir die Glättung, um zufällige Variation (Lärm) aus unserer historischen Nachfrage zu entfernen. Dies ermöglicht es uns, die Bedarfsmuster (vor allem die Trend - und Saisonalität) und die Nachfrage, die zur Abschätzung der zukünftigen Nachfrage genutzt werden können, besser zu identifizieren. Der Lärm in der Nachfrage ist das gleiche Konzept wie das tägliche Springen der Temperaturdaten. Nicht überraschend, die häufigste Art und Weise Menschen entfernen Rauschen aus der Nachfrage Geschichte ist es, einen einfachen Durchschnitt verwenden oder genauer, ein gleitender Durchschnitt. Ein gleitender Durchschnitt verwendet nur eine vordefinierte Anzahl von Perioden, um den Durchschnitt zu berechnen, und diese Perioden bewegen sich mit der Zeit. Zum Beispiel, wenn Im mit einem 4-Monats-gleitenden Durchschnitt, und heute ist der 1. Mai, Im mit einem Durchschnitt der Nachfrage, die im Januar, Februar, März und April aufgetreten. Am 1. Juni werde ich die Nachfrage von Februar, März, April und Mai nutzen. Gewichteter gleitender Durchschnitt. Wenn wir einen Durchschnitt verwenden, wenden wir die gleiche Wichtigkeit (Gewicht) auf jeden Wert im Datensatz an. Im gleitenden 4-Monatsdurchschnitt stellte jeder Monat 25 des gleitenden Durchschnitts dar. Bei der Verwendung der Nachfragegeschichte, um die zukünftige Nachfrage (und insbesondere die zukünftige Entwicklung) zu prognostizieren, ist es logisch, zu der Schlussfolgerung zu kommen, dass die jüngere Geschichte eine größere Auswirkung auf Ihre Prognose haben möchte. Wir können unsere gleitende durchschnittliche Berechnung anpassen, um verschiedene Gewichte auf jede Periode anzuwenden, um die gewünschten Ergebnisse zu erzielen. Wir geben diese Gewichte als Prozentsätze an, und die Summe aller Gewichte für alle Perioden muss zu 100 addieren. Wenn wir also entscheiden, dass wir 35 als Gewicht für die nächste Periode in unserem 4-monatigen gewichteten gleitenden Durchschnitt anwenden wollen, können wir Subtrahieren 35 von 100 zu finden, wir haben 65 übrig geblieben, um über die anderen 3 Perioden zu teilen. Zum Beispiel können wir am Ende mit einer Gewichtung von 15, 20, 30 und 35 für die 4 Monate (15 20 30 35 100). Exponentielle Glättung. Wenn wir auf das Konzept der Anwendung eines Gewichtes auf die jüngste Periode (wie z. B. 35 im vorigen Beispiel) und das Verbreiten des Restgewichts (berechnet durch Subtrahieren des letzten Periodengewichts von 35 von 100 auf 65) zurückgehen, haben wir Die Grundbausteine ​​für unsere exponentielle Glättungsberechnung. Der Steuereingang der Exponentialglättungsberechnung ist als Glättungsfaktor (auch Glättungskonstante genannt) bekannt. Es handelt sich im Wesentlichen um die Gewichtung für die jüngsten Zeiträume Nachfrage. Wenn wir also 35 als Gewichtung für die letzte Periode in der gewichteten gleitenden Durchschnittsberechnung verwendeten, könnten wir auch 35 als Glättungsfaktor in unserer exponentiellen Glättungsberechnung verwenden, um einen ähnlichen Effekt zu erhalten. Der Unterschied zu der exponentiellen Glättungsberechnung ist, dass anstelle von uns auch herauszufinden, wie viel Gewicht auf jede vorhergehende Periode anzuwenden ist, der Glättungsfaktor verwendet, um das automatisch zu tun. Also hier kommt der exponentielle Teil. Wenn wir 35 als Glättungsfaktor verwenden, beträgt die Gewichtung der letzten Periodennachfrage 35. Die Gewichtung der nächsten letzten Periodennachfrage (der Zeitraum vor dem jüngsten) beträgt 65 von 35 (65 ergibt sich aus der Subtraktion von 35 von 100). Dies entspricht 22,75 Gewichtung für diesen Zeitraum, wenn Sie die Mathematik. Die nächste Nachfrage nach der letzten Zeit wird 65 von 65 von 35 sein, was 14,79 entspricht. Der Zeitraum davor wird gewichtet mit 65 von 65 von 65 von 35, was 9,61 entspricht, und so weiter. Und dies geht zurück durch alle Ihre früheren Perioden den ganzen Weg zurück zum Anfang der Zeit (oder der Punkt, an dem Sie begonnen haben, exponentielle Glättung für das jeweilige Element). Youre wahrscheinlich denken, dass aussehen wie eine ganze Menge Mathe. Aber die Schönheit der exponentiellen Glättungsberechnung ist, dass, anstatt zu jeder vorherigen Periode neu berechnen müssen, jedes Mal wenn Sie eine neue Periodenanforderung erhalten, verwenden Sie einfach die Ausgabe der exponentiellen Glättungsberechnung aus der vorherigen Periode, um alle vorherigen Perioden darzustellen. Sind Sie noch verwirrt Dies wird mehr Sinn machen, wenn wir die tatsächliche Berechnung betrachten Normalerweise beziehen wir uns auf die Ausgabe der exponentiellen Glättung Berechnung als die nächste Periode Prognose. In Wirklichkeit braucht die endgültige Prognose etwas mehr Arbeit, aber für die Zwecke dieser spezifischen Berechnung werden wir sie als die Prognose bezeichnen. Die exponentielle Glättungsberechnung ist wie folgt: Die letzte Periodenforderung multipliziert mit dem Glättungsfaktor. PLUS Die Prognose der letzten Perioden multipliziert mit (minus Glättungsfaktor). D die letzten Perioden S den Glättungsfaktor, der in dezimaler Form dargestellt ist (also 35 als 0,35 dargestellt werden). F die letzten Periodenprognosen (die Ausgabe der Glättungsberechnung aus der vorherigen Periode). OR (unter Annahme eines Glättungsfaktors von 0,35) (D 0,35) (F 0,65) Es wird nicht viel einfacher als das. Wie Sie sehen können, benötigen wir für die Dateneingaben hier nur die jüngsten Zeiträume und die letzten Prognosezeiträume. Wir wenden den Glättungsfaktor (Gewichtung) auf die letzten Perioden an, die in der gewichteten gleitenden Durchschnittsberechnung dieselbe Weise erfordern. Anschließend legen wir die verbleibende Gewichtung (1 minus Glättungsfaktor) auf die jeweils aktuellsten Perioden an. Da die Prognose der letzten Perioden auf Basis der vorherigen Periodennachfrage und der vorherigen Periodenprognosen erstellt wurde, die auf der Nachfrage nach dem vorherigen Zeitraum und der Prognose für den Zeitraum vor der Prognose beruhte, der auf der Nachfrage für den Zeitraum zuvor beruhte Dass und die Prognose für den Zeitraum vor, dass auf der Grundlage der Zeitraum vor, dass. Gut, können Sie sehen, wie alle vorherigen Perioden Nachfrage sind in der Berechnung dargestellt, ohne tatsächlich zurück und Neuberechnung alles. Und das ist, was fuhr die anfängliche Popularität der exponentiellen Glättung. Es war nicht, weil es einen besseren Job des Glättens als gewogenen gleitenden Durchschnitt machte, war es, weil es einfacher war, in einem Computerprogramm zu berechnen. Und weil Sie didnt brauchen, um darüber nachzudenken, welche Gewichtung früheren Perioden zu geben oder wie viele vorherige Perioden zu verwenden, wie Sie in gewichteten gleitenden Durchschnitt. Und, weil es klang nur kühler als gewichtet gleitenden Durchschnitt. Tatsächlich könnte man argumentieren, dass der gewichtete gleitende Durchschnitt eine größere Flexibilität bietet, da Sie mehr Kontrolle über die Gewichtung früherer Perioden haben. Die Realität ist entweder von diesen können respektable Ergebnisse liefern, also warum nicht mit einfacher und kühler klingen gehen. Exponentielle Glättung in Excel Lets sehen, wie dies tatsächlich in einer Kalkulationstabelle mit realen Daten aussehen würde. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. In Abbildung 1A haben wir eine Excel-Tabelle mit 11 Wochen Nachfrage und eine exponentiell geglättete Prognose aus dieser Nachfrage berechnet. Ive verwendete einen Glättungsfaktor von 25 (0,25 in Zelle C1). Die aktuelle aktive Zelle ist Zelle M4, die die Prognose für Woche 12 enthält. In der Formelleiste sehen Sie die Formel (L3C1) (L4 (1-C1)). Die einzigen direkten Eingaben zu dieser Berechnung sind die vorherigen Periodennachfrage (Zelle L3), die vorherigen Periodenvorhersage (Zelle L4) und der Glättungsfaktor (Zelle C1, dargestellt als absolute Zelle Bezug C1). Wenn wir eine exponentielle Glättungsberechnung starten, müssen wir den Wert für die 1. Prognose manuell stecken. Also in Zelle B4, anstatt eine Formel, haben wir nur in der Nachfrage aus der gleichen Periode wie die Prognose eingegeben. In der Zelle C4 haben wir unsere erste exponentielle Glättungsberechnung (B3C1) (B4 (1-C1)). Wir können dann kopieren Cell C4 und fügen Sie es in den Zellen D4 bis M4, um den Rest unserer prognostizierten Zellen zu füllen. Sie können nun auf eine beliebige Prognosezelle doppelklicken, um zu sehen, dass sie auf der vorherigen Periodenprognosezelle und den vorherigen Periodennachfragezellen basiert. Somit erbt jede nachfolgende exponentielle Glättungsberechnung die Ausgabe der vorherigen exponentiellen Glättungsberechnung. Das ist, wie jede vorherige Periodenanforderung in der letzten Periodenrechnung dargestellt wird, obwohl diese Berechnung nicht direkt auf die vorherigen Perioden bezieht. Wenn Sie Lust bekommen wollen, können Sie Excels Trace Präzedenzfall-Funktion. Klicken Sie dazu auf Cell M4, und klicken Sie dann in der Multifunktionsleiste (Excel 2007 oder 2010) auf die Registerkarte Formeln, und klicken Sie dann auf Vorverfolgung verfolgen. Es wird Verbindungslinien auf die erste Ebene der Präzedenzfälle ziehen, aber wenn Sie auf Trace Precedents klicken, zieht es Verbindungslinien zu allen vorherigen Perioden, um Ihnen die vererbten Beziehungen anzuzeigen. Jetzt können Sie sehen, was exponentielle Glättung für uns getan hat. Abbildung 1B zeigt ein Liniendiagramm unserer Nachfrage und Prognose. Sie sehen, wie die exponentiell geglättete Prognose die meiste Zersiedelung (das Springen um) von der wöchentlichen Nachfrage entfernt, aber dennoch gelingt, dem zu folgen, was ein Aufwärtstrend bei der Nachfrage zu sein scheint. Youll auch bemerken, dass die geglättete Vorhersagelinie tendenziell niedriger als die Nachfrage Linie ist. Dies wird als Trendverzögerung bezeichnet und ist ein Nebeneffekt des Glättprozesses. Jedes Mal, wenn Sie Glättung verwenden, wenn ein Trend vorliegt, wird Ihre Prognose hinter dem Trend zurückbleiben. Dies gilt für jede Glättungstechnik. In der Tat, wenn wir diese Tabellenkalkulation fortsetzen und beginnen Eingabe niedrigeren Nachfrage-Nummern (einen Abwärtstrend) würden Sie sehen, die Nachfrage Linie fallen, und die Trendlinie über sie vor dem Beginn der Abwärtstrend folgen. Thats, warum ich zuvor erwähnt, die Ausgabe aus der exponentiellen Glättung Berechnung, die wir eine Prognose nennen, braucht noch etwas mehr Arbeit. Es gibt viel mehr zu Prognosen als nur Glättung der Beulen in der Nachfrage. Wir müssen zusätzliche Anpassungen für Dinge wie Trend lag, Saisonalität, bekannte Ereignisse, die die Nachfrage beeinflussen können, etc. Aber alle, die über den Rahmen dieses Artikels. Sie werden wahrscheinlich auch in Begriffe wie double-exponentielle Glättung und Triple-exponentielle Glättung. Diese Begriffe sind ein wenig irreführend, da Sie nicht re-Glättung der Nachfrage mehrfach (Sie könnten, wenn Sie wollen, aber das ist nicht der Punkt hier). Diese Begriffe repräsentieren die Verwendung einer exponentiellen Glättung für zusätzliche Elemente der Prognose. Also mit einfacher exponentieller Glättung glätten Sie die Grundanforderung, aber mit doppelt-exponentieller Glättung glätten Sie die Grundanforderung plus den Trend und mit dreifach-exponentieller Glättung glätten Sie die Grundanforderung plus Trend und Saisonalität. Die andere am häufigsten gestellte Frage über exponentielle Glättung ist, wo bekomme ich meinen Glättungsfaktor Es gibt keine magische Antwort hier, müssen Sie verschiedene Glättungsfaktoren mit Ihren Nachfrage Daten testen, um zu sehen, was Ihnen die besten Ergebnisse zu testen. Es gibt Berechnungen, die den Glättungsfaktor automatisch einstellen (und ändern) können. Diese fallen unter den Begriff adaptive Glättung, aber Sie müssen vorsichtig mit ihnen sein. Es gibt einfach keine perfekte Antwort und Sie sollten nicht blind implementieren keine Berechnung ohne gründliche Prüfung und Entwicklung eines gründlichen Verständnis dessen, was die Berechnung tut. Sie sollten auch What-If-Szenarien ausführen, um zu sehen, wie diese Berechnungen auf Bedarfsänderungen reagieren, die möglicherweise nicht in den Bedarfsdaten vorhanden sind, die Sie für Tests verwenden. Das Datenbeispiel, das ich vorher verwendet habe, ist ein sehr gutes Beispiel für eine Situation, in der Sie wirklich einige andere Szenarien testen müssen. Dieses besondere Datenbeispiel zeigt einen etwas konsequenten Aufwärtstrend. Viele große Unternehmen mit sehr teuren Prognose-Software bekam in großen Schwierigkeiten in der nicht so fernen Vergangenheit, wenn ihre Software-Einstellungen, die für eine wachsende Wirtschaft gezwickt wurden nicht gut reagiert, wenn die Wirtschaft begann stagnieren oder schrumpfen. Dinge wie dieses passieren, wenn Sie nicht verstehen, was Ihre Berechnungen (Software) tatsächlich tun. Wenn sie ihr Prognosesystem verstanden, hätten sie gewußt, daß sie nötig waren, um zu springen und etwas zu ändern, als plötzliche dramatische Veränderungen an ihrem Geschäft auftraten. So dort haben Sie es die Grundlagen der exponentiellen Glättung erklärt. Wollen Sie mehr über die Verwendung exponentieller Glättung in einer aktuellen Prognose wissen, lesen Sie in meinem Buch Inventory Management Explained. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Dave Piasecki. Ist Eigentümer / Betreiber von Inventory Operations Consulting LLC. Ein Beratungsunternehmen, das Dienstleistungen im Zusammenhang mit Bestandsführung, Materialhandling und Lagerbetrieb anbietet. Er hat über 25 Jahre Erfahrung in der Betriebsführung und kann über seine Website (www. inventoryops) erreicht werden, wo er zusätzliche relevante Informationen unterhält. My BusinessForecasting von Smoothing Techniques Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen, ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die bisherigen Beobachtungen gleich gewichtet werden, erhält die exponentielle Glättung exponentiell abnehmende Gewichte, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 / (n1) OR n (2 - a) / a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) / Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu bewerten und unter den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die aktuelle Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. Moving durchschnittliche und exponentielle Glättungsmodelle Als ein erster Schritt in über jenseits der mittleren Modelle, zufällige gehen Modelle und lineare Trend-Modelle, nicht saisonale Muster und Trends bewegen können Unter Verwendung eines gleitenden Durchschnitts - oder Glättungsmodells extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird in der Periode t (m1) / 2 zentriert, was bedeutet, daß die Schätzung des lokalen Mittels dazu neigt, hinter dem Wert zu liegen Wahren Wert des lokalen Mittels um etwa (m1) / 2 Perioden. Das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt ist also (m1) / 2 relativ zu der Periode, für die die Prognose berechnet wird: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten in der Region zu liegen Daten. Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Wandermodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt er viel von der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das durchschnittliche Alter der Daten in dieser Prognose beträgt 3 ((51) / 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-term einfachen gleitenden Durchschnitt ausprobieren, erhalten wir sogar noch bessere Prognosen und mehr eine nacheilende Wirkung: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) / 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. Es sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell zu einem zufälligen Weg-Modell (ohne Wachstum) äquivalent ist. Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1/945 relativ zu dem Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1/945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 / 0,2961 3,4 Perioden, was ähnlich wie bei einem 6-Term-Simple Moving ist durchschnittlich. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird nur ein ARIMA-Modell mit einer Nicht-Seasonal-Differenz und einem MA (1) - Term mit einer Konstanten, d. h. einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel in Ordnung ist oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, so würde dies die Prognose für Y in der Periode t1 sein.) Dann sei Squot die doppelt geglättete Folge, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit und die erste Prognose der tatsächlichen ersten Beobachtung gleich) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die es anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Durchschnittsalter der Daten, die für die Schätzung der lokalen Ebene der Serie verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1/946, wenn auch nicht exakt gleich es. In diesem Fall ergibt sich 1 / 0,006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern sie ist von der gleichen Größenordnung wie die Stichprobengröße von 100 , So dass dieses Modell ist im Durchschnitt über eine ganze Menge Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.) Exploration des exponentiell gewichteten gleitenden Durchschnitts Volatilität ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächliche Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor (speziell eine 1 / m) ist, dann sieht eine einfache Varianz so aus: Die EWMA verbessert die einfache Varianz Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht entspricht (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre tägliche Aktienkursdaten, das sind 509 tägliche Renditen und 1/509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit nieder, daher könnte eine einfache Varianz künstlich hoch sein. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um eine Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) Eine Person, die Derivate, Rohstoffe, Anleihen, Aktien oder Währungen mit einem überdurchschnittlichen Risiko als Gegenleistung handelt. "HINTquot ist ein Akronym, das für für quothigh Einkommen keine Steuern steht. Es wird auf Hochverdiener angewendet, die vermeiden, Bundeseinkommen zu zahlen. Ein Market Maker, dass kauft und verkauft extrem kurzfristige Unternehmensanleihen genannt Commercial Paper. Ein Papierhändler ist in der Regel. Eine Bestellung mit einem Brokerage zu kaufen oder zu verkaufen eine bestimmte Anzahl von Aktien zu einem bestimmten Preis oder besser platziert. Der uneingeschränkte Kauf und Verkauf von Waren und Dienstleistungen zwischen den Ländern ohne Einschränkungen wie. In der Welt des Geschäfts ist ein Unicorn ein Unternehmen, in der Regel ein Start-up, die nicht über eine etablierte Performance-Rekord. Gegeben einer Zeitreihe xi, möchte ich einen gewichteten gleitenden Durchschnitt mit einem Mittelwert-Fenster von N Punkten zu berechnen, wo die Gewichtungen begünstigen neuere Werte gegenüber älteren Werten. Bei der Wahl der Gewichte verwende ich die bekannte Tatsache, daß eine geometrische Reihe gegen 1 konvergiert, d. H. Sum (frac) k, sofern unendlich viele Begriffe genommen werden. Um eine diskrete Zahl von Gewichtungen zu erhalten, die zu einer Einheit summieren, nehme ich einfach die ersten N-Terme der geometrischen Reihe (frac) k und normalisiere dann ihre Summe. Bei N4 ergeben sich zum Beispiel die nicht normierten Gewichte, die nach Normalisierung durch ihre Summe ergibt. Der gleitende Mittelwert ist dann einfach die Summe aus dem Produkt der letzten 4 Werte gegen diese normierten Gewichte. Diese Methode verallgemeinert sich in der offensichtlichen Weise zu bewegten Fenstern der Länge N und scheint auch rechnerisch einfach. Gibt es einen Grund, diese einfache Methode nicht zu verwenden, um einen gewichteten gleitenden Durchschnitt mit exponentiellen Gewichten zu berechnen, frage ich, weil der Wikipedia-Eintrag für EWMA komplizierter erscheint. Was mich fragt, ob die Lehrbuch-Definition von EWMA hat vielleicht einige statistische Eigenschaften, die die obige einfache Definition nicht oder sind sie in der Tat gleichwertig sind, beginnen Sie mit 1), dass es keine ungewöhnlichen Werte Und keine Pegelverschiebungen und keine Zeittrends und keine saisonalen Dummies 2), dass das optimale gewichtete Mittel Gewichte aufweist, die auf eine gleichmäßige Kurve fallen, die durch einen Koeffizienten 3 beschreibbar ist), dass die Fehlerabweichung konstant ist, dass es keine bekannten Ursachenreihen gibt Annahmen. Ndash IrishStat Okt 1 14 am 21:18 Ravi: In dem gegebenen Beispiel ist die Summe der ersten vier Ausdrücke 0,9375 0,06250,1250.250,5. Die ersten vier Ausdrücke haben also 93,8 des Gesamtgewichts (6,2 ist im abgeschnittenen Schwanz). Verwenden Sie diese, um normierte Gewichte zu erhalten, die zu einer Einheit durch Reskalierung (dividieren) um 0,9375 zusammenkommen. Dies ergibt 0,06667, 0,1333, 0,267, 0,5333. Ndash Assad Ebrahim Ich habe festgestellt, dass die Berechnung der exponentiell gewichteten laufenden Durchschnitte mit overline leftarrow overline alpha (x - overline), alphalt1 ist eine einfache einzeilige Methode, die leicht, wenn auch nur annähernd interpretierbar in Bezug auf Eine effektive Anzahl von Proben Nalpha (vergleichen Sie diese Form an die Form für die Berechnung der laufenden Mittelwert), erfordert nur das aktuelle Datum (und den aktuellen Mittelwert), und ist numerisch stabil. Technisch integriert dieser Ansatz alle Geschichte in den Durchschnitt. Die beiden Hauptvorteile bei der Verwendung des Vollfensters (im Gegensatz zum verkürzten, in der Frage diskutierten) liegen darin, dass es in einigen Fällen die analytische Charakterisierung der Filterung erleichtern kann, und es reduziert die Fluktuationen, die bei sehr großen (oder kleinen) Daten induziert werden Wert ist Teil des Datensatzes. Zum Beispiel betrachten das Filter-Ergebnis, wenn die Daten sind alle Null, außer für ein Datum, dessen Wert 106. beantwortet Nov 29 12 bei 0:33

No comments:

Post a Comment